Bi-flows on a network

Hisayasu Kurata and Maretsugu Yamasaki

(Received March 6, 2013)

Abstract. Flows on a network play an important role in the theory of discrete harmonic functions. In the study of discrete bi-harmonic functions, we encounter a concept of bi-flows. In this paper, we are concerned with minimization problems for bi-flows which are analogous to those for flows.

Key words: discrete potential theory, bi-harmonic Green function, bi-flows on a network.

1. Introduction

In the theory of discrete potential theory on networks, it is well-known that flows have played an important role related to discrete harmonic functions. For example, a minimizing problem related to flows from a node to the ideal boundary with unit strength characterizes the harmonic Green function. In this paper, we introduce an arc-arc incidence matrix $b(y, y')$ of two arcs y and y' and an operator B_r related to it. We say that a function w on arcs is a bi-flow if $B_r w$ is a flow. If u is a bi-harmonic function defined on nodes, then we see that the discrete derivative $w = du$ is a bi-flow. We shall consider two minimizing problems related to bi-flows from a node to the ideal boundary. The optimal solution of each minimizing problem characterizes the bi-harmonic Green function.

We organize this paper as follows: Some properties of b and B_r will be given in Section 3. We define bi-flows as well as weak bi-flows in Section 4. Two minimizing problems related to bi-flows are given in Sections 5 and 6.

2. Preliminaries

Let $N = \{X, Y, K, r\}$ be an infinite network which is connected and locally finite and has no self-loops. Here X is the set of nodes and Y is the set of arcs. The node-arc incidence matrix K is a function on $X \times Y$ and $K(x, y) = -1$ if x is the initial node $x^-(y)$ of y; $K(x, y) = 1$ if x
is the terminal node $x^+(y)$ of y; otherwise $K(x, y) = 0$. The resistance r is a strictly positive function on Y. Let $L(X)$ be the set of all real valued functions on X and let $L_0(X)$ be the set of all $u \in L(X)$ with finite supports. We define $L(Y)$ and $L_0(Y)$ similarly.

For $u \in L(X)$ and $w \in L(Y)$, we define $du \in L(Y)$ and $\partial w \in L(X)$ by

$$du(y) = -r(y)^{-1} \sum_{x \in X} K(x, y)u(x),$$
$$\partial w(x) = \sum_{y \in Y} K(x, y)w(y).$$

Also we define the Laplacian $\Delta u \in L(X)$ and the bi-Laplacian $\Delta^2 u \in L(X)$ for $u \in L(X)$ by

$$\Delta u = \partial (du), \quad \Delta^2 u = \Delta (\Delta u).$$

For $y \in Y$, let $e(y) = \{x \in X; K(x, y) \neq 0\} = \{x^+(y), x^-(y)\}$. For $a \in X$, denote by $X(a)$ the set of nodes $x \in X$ such that $K(a, y)K(x, y) \neq 0$ for some $y \in Y$.

We shall study the bi-Laplacian and bi-flows on a network by using an arc-arc incidence function b on $Y \times Y$.

3. **An arc-arc incidence function**

An arc-arc incidence function b on $Y \times Y$ is defined by

$$b(y, y') = \sum_{z \in X} K(z, y)K(z, y') = \sum_{z \in e(y) \cap e(y')} K(z, y)K(z, y').$$

Proposition 3.1 The arc-arc incidence function b has the following properties:

(i) $b(y, y') = b(y', y)$ for all $y, y' \in Y$;
(ii) $b(y, y) = 2$;
(iii) $b(y, y') = K(x, y)K(x, y')$ if y and y' meet only one node x, i.e., $e(y) \cap e(y') = \{x\}$;
(iv) $b(y, y') = 0$ if $e(y) \cap e(y') = \emptyset$;

In case $e(y) = e(y')$ and $y \neq y'$,
(v) \(b(y, y') = 2 \) if \(x^+(y) = x^+(y') \) and \(x^-(y) = x^-(y') \);
(vi) \(b(y, y') = -2 \) if \(x^+(y) = x^-(y') \) and \(x^-(y) = x^+(y') \).

Define a linear operator \(B_r \) from \(L(Y) \) to \(L(Y) \) by
\[
B_r w(y) = r(y) \sum_{y' \in Y} b(y, y') w(y').
\]

Lemma 3.1 \(B_r w = -d\partial w \) on \(Y \).

Proof. A simple calculation shows that
\[
B_r w(y) = r(y) \sum_{y' \in Y} \left(\sum_{z \in X} K(z, y) K(z, y') \right) w(y')
= r(y) \sum_{z \in X} K(z, y) \left(\sum_{y' \in Y} K(z, y') w(y') \right)
= r(y) \sum_{z \in X} K(z, y) \partial w(z) = -d\partial w(y). \quad \Box
\]

Define \(c(x, z) \) for \(x, z \in X \) by
\[
c(x, z) = \sum_{y \in Y} r(y)^{-1} K(x, y) K(z, y).
\]

Lemma 3.2 \(\quad \)(i) \(c(x, z) \neq 0 \) if and only if \(z \in X(x) \).

(ii) \(\sum_{z \in X} c(x, z) = 0 \).

(iii) \(\Delta u(x) = -\sum_{z \in X} c(x, z) u(z) \).

Proof. (i) It is trivial that \(z \notin X(x) \) implies \(c(x, z) = 0 \). If \(x = z \), then \(K(x, y) K(z, y) \in \{0, 1\} \) for all \(y \in Y \) and \(K(x, y) K(z, y) = 1 \) for some \(y \in Y \). Therefore \(c(x, z) > 0 \). Let \(z \in X(x) \setminus \{x\} \). Then \(K(x, y) K(z, y) \in \{0, -1\} \) for all \(y \in Y \) and \(K(x, y) K(z, y) = -1 \) for some \(y \in Y \). Therefore \(c(x, z) < 0 \).

(ii) Since \(\sum_{z \in X} K(z, y) = 0 \) for every \(y \in Y \), we have
\[
\sum_{z \in X} c(x, z) = \sum_{y \in Y} r(y)^{-1} K(x, y) \sum_{z \in X} K(z, y) = 0.
\]
(iii) \[\sum_{z \in X} c(x, z)u(z) = \sum_{z \in X} \sum_{y \in Y} r(y)^{-1}K(x, y)K(z, y)u(z) \]
\[= \sum_{y \in Y} r(y)^{-1}K(x, y) \sum_{z \in X} K(z, y)u(z) \]
\[= -\sum_{y \in Y} K(x, y)du(y) = -\partial du(x) = -\Delta u(x). \quad \square \]

4. Bi-flows

Let \(a, b \in X \). We say that \(w \in L(Y) \) is a flow from \(a \) to \(b \) of strength \(I[w] \) if the following condition is fulfilled:
\[\partial w(x) = (\varepsilon_b(x) - \varepsilon_a(x))I[w], \]
where \(\varepsilon_a(x) = 0 \) if \(x \neq a \) and \(\varepsilon_a(a) = 1 \). Denote by \(\mathbf{F}(a, b) \) the set of all flows from \(a \) to \(b \).

Lemma 4.1 \(B_r w(y) = r(y)^{-1}(K(b, y) - K(a, y))I[w] \) for \(w \in \mathbf{F}(a, b) \).

Proof. We have by Lemma 3.1
\[B_r w(y) = -d\partial w(y) = r(y)^{-1} \sum_{z \in X} K(z, y)(\varepsilon_b(z) - \varepsilon_a(z))I[w] \]
\[= r(y)^{-1}(K(b, y) - K(a, y))I[w]. \quad \square \]

We say that \(w \in L(Y) \) is a bi-flow from \(a \) to \(b \) of strength \(J[w] \) if \(B_r w \in \mathbf{F}(a, b) \) and \(J[w] = I[B_r w] \), i.e.,
\[\partial B_r w(x) = (\varepsilon_b(x) - \varepsilon_a(x))J[w]. \]

Denote by \(\mathbf{BF}(a, b) \) the set of all bi-flows from \(a \) to \(b \).

Assume that \(X(a) \cap X(b) = \emptyset \). We say that \(w \in L(Y) \) is a weak bi-flow from \(a \) to \(b \) of strength \(\tilde{J}[w] \) if
\[\partial B_r w(x) = 0 \quad \text{for all } x \in X \setminus \{X(a) \cup X(b)\}, \]
\[\tilde{J}[w] = -\sum_{x \in X(a)} \partial B_r w(x) = \sum_{x \in X(b)} \partial B_r w(x). \]
Denote by $\text{WBF}(a,b)$ the set of all weak bi-flows from a to b.

Denote by \mathbf{C} and \mathbf{C}_B the set of cycles on N and the set of bicycles on N,

\[\mathbf{C} = \{w \in L(Y); \partial w = 0\}, \quad \mathbf{C}_B = \{w \in L(Y); \partial B_r w = 0\}.\]

Denote by \mathbf{K}_B and \mathbf{H} the kernel of B_r and the set of all harmonic functions on X,

\[\mathbf{K}_B = \{w \in L(Y); B_r w = 0\}, \quad \mathbf{H} = \{u \in L(X); \Delta u = 0\}.\]

Lemma 4.2 \(\{dh; h \in \mathbf{H}\} \subset \mathbf{C} \subset \mathbf{K}_B \subset \mathbf{C}_B\).

Proof. Let $h \in \mathbf{H}$. Then $\partial (dh) = \Delta h = 0$, so that $dh \in \mathbf{C}$. Let $w \in \mathbf{C}$. Then by Lemma 3.1 $B_r w = -d \partial w = 0$, so that $w \in \mathbf{K}_B$. The inclusion $\mathbf{K}_B \subset \mathbf{C}_B$ is trivial. \(\Box\)

Proposition 4.1

(i) $\mathbf{C} \subset \mathbf{F}(a,b)$ and $\mathbf{C}_B \subset \mathbf{BF}(a,b)$ for $a, b \in X$.

(ii) $\{w \in \mathbf{F}(a,b); I[w] = 0\} = \mathbf{C}$ and $\{w \in \mathbf{BF}(a,b); J[w] = 0\} = \mathbf{C}_B$ for $a, b \in X$.

(iii) $\mathbf{F}(a,a) = \mathbf{C}$ and $\mathbf{BF}(a,a) = \mathbf{C}_B$ for $a \in X$.

(iv) $\mathbf{F}(a_1, b_1) \cap \mathbf{F}(a_2, b_2) = \mathbf{C}$ and $\mathbf{BF}(a_1, b_1) \cap \mathbf{BF}(a_2, b_2) = \mathbf{C}_B$ for $a_1, a_2, b_1, b_2 \in X$ with $\{a_1, b_1\} \neq \{a_2, b_2\}$.

Proof. We shall show the assertions for $\mathbf{F}(a,b)$; the assertions for $\mathbf{BF}(a,b)$ can be similarly proved. We easily have (i) and (ii).

To prove (iii), it suffices to show that $\mathbf{F}(a,a) \subset \mathbf{C}$. Let $w \in \mathbf{F}(a,a)$. Then $\partial w = (\varepsilon_a - \varepsilon_a) I[w] = 0$, so that $w \in \mathbf{C}$.

We shall prove (iv). We need to show that $\mathbf{F}(a_1, b_1) \cap \mathbf{F}(a_2, b_2) \subset \mathbf{C}$. We may assume $a_1 \notin \{a_2, b_2\}$. Using (iii) we may also assume that $a_1 \neq b_1$ and $a_2 \neq b_2$. Let $w \in \mathbf{F}(a_1, b_1) \cap \mathbf{F}(a_2, b_2)$. Then $\partial w(a_1) = -I[w]$ from $w \in \mathbf{F}(a_1, b_1)$ and $\partial w(a_1) = 0$ from $w \in \mathbf{F}(a_2, b_2)$. We have $I[w] = 0$, so that $\partial w = 0$. \(\Box\)

Theorem 4.1 Assume that $X(a) \cap X(b) = \emptyset$.

(i) $\mathbf{BF}(a,b) \subset \text{WBF}(a,b)$ and $J[w] = \bar{J}[w]$ for $w \in \mathbf{BF}(a,b)$.

(ii) $\mathbf{F}(a,b) \subset \text{WBF}(a,b)$ and $\bar{J}[w] = 0$ for $w \in \mathbf{F}(a,b)$.

(iii) $\mathbf{F}(a,b) \cap \mathbf{BF}(a,b) = \mathbf{C}$.
Proof. It is easy to see that (i) holds. We shall prove (ii). Let \(w \in F(a, b) \).

By Lemma 4.1

\[
\partial B_r w(x) = \sum_{y \in Y} K(x, y) r(y)^{-1}(K(b, y) - K(a, y)) I[w]
\]

\[
= (c(x, b) - c(x, a)) I[w].
\]

For \(x \in X \setminus (X(a) \cup X(b)) \) we have \(\partial B_r w(x) = 0 \) by Lemma 3.2 (i). Also Lemma 3.2 (i) and (ii) show that \(\sum_{x \in X(a)} \partial B_r w(x) = -\sum_{x \in X(a)} c(x, a) I[w] = 0 \). Similarly \(\sum_{x \in X(b)} \partial B_r w(x) = 0 \).

Next we prove (iii). Lemma 4.2 and Proposition 4.1 (i) show that \(C \subset F(a, b) \cap BF(a, b) \). We shall show the converse. Let \(w \in F(a, b) \cap BF(a, b) \). Let \(x \in X(a) \setminus \{a\} \). Then the equation (1) shows that \(0 = \partial B_r w(x) = -c(x, a) I[w] \). Lemma 3.2 (i) implies \(I[w] = 0 \), which means \(\partial w = 0 \).

Theorem 4.2 Suppose that \(X(a) \cup X(b) \neq (X(a) \cap X(b)) \cup \{a, b\} \). Then \(F(a, b) \cap BF(a, b) \subset C \cap K_B \).

Proof. It is clear that \((X(a) \cap X(b)) \cup \{a, b\} \subset X(a) \cup X(b) \). By our assumption, there exists \(x_0 \in X(a) \cup X(b) \) such that \(x_0 \notin (X(a) \cap X(b)) \cup \{a, b\} \). We may assume that \(x_0 \in X(a), x_0 \notin X(b) \) and \(x_0 \neq a \). Let \(w \in F(a, b) \cap BF(a, b) \). Since \(K(x_0, y) K(b, y) = 0 \) for all \(y \in Y \), we have by Lemma 4.1

\[
0 = \partial B_r w(x_0) = \sum_{y \in Y} K(x_0, y) B_r w(y)
\]

\[
= -I[w] \sum_{y \in Y} r(y)^{-1} K(x_0, y) K(a, y) = -I[w] c(x_0, a).
\]

Lemma 3.2 (i) shows that \(c(x_0, a) \neq 0 \), and that \(I[w] = 0 \). Thus \(\partial w = 0 \) on \(X \). Lemma 4.1 shows that \(B_r w = 0 \) on \(Y \).

5. **Bi-flows to the ideal boundary**

Now we recall some definitions related to the energy \(H[w] \) of \(w \in L(Y) \) and the Dirichlet sum \(D[u] \) of \(u \in L(X) \):
\[\langle w, w' \rangle = \sum_{y \in Y} r(y)w(y)w'(y), \]
\[H[w] = \langle w, w \rangle = \sum_{y \in Y} r(y)w(y)^2, \]
\[L_2(Y; r) = \{ w \in L(Y); H[w] < \infty \}, \]
\[D[u, u'] = \langle du, du' \rangle = \sum_{y \in Y} r(y)du(y)du'(y), \]
\[D[u] = D[u, u] = H[du] = \sum_{y \in Y} r(y)(du(y))^2, \]
\[D(N) = \{ u \in L(X); D[u] < \infty \}. \]

Lemma 5.1 \[\langle du, du' \rangle = -\sum_{x \in X} u(x)\Delta u'(x) \text{ for } u \in L_0(X) \text{ and for } u' \in D(N). \]

Proof.
\[\langle du, du' \rangle = \sum_{y \in Y} r(y)du(y)du'(y) = -\sum_{y \in Y} \sum_{x \in X} K(x, y)u(x)du'(y) \]
\[= -\sum_{x \in X} u(x) \sum_{y \in Y} K(x, y)du'(y) = -\sum_{x \in X} u(x)\partial du'(x) \]
\[= -\sum_{x \in X} u(x)\Delta u'(x). \]

It is known that \(D(N) \) (\(L_2(Y; r) \) resp.) is a Hilbert space with respect to the norm \(\|u\|_2 = (D[u] + u(x_0)^2)^{1/2} \) (\(H[w]^{1/2} \) resp.) with a fixed node \(x_0 \in X \). Denote by \(D_0(N) \) the closure of \(L_0(X) \) in the Hilbert space \(D(N) \) (see [3]).

The Green function \(g_a \in L(X) \) with pole at \(a \in X \) is defined as the unique function satisfying the conditions:
\[g_a \in D_0(N) \quad \text{and} \quad \Delta g_a = -\varepsilon_a \text{ on } X. \]

We know that \(g_a \) exists for every \(a \) if and only if \(N \) is hyperbolic, i.e., \(D_0(N) \neq D(N) \) (see [2]). Denote by \(HD(N) \) the set of all \(u \in D(N) \) such that \(\Delta u = 0 \).
Lemma 5.2 \(D_0(N) \cap \text{HD}(N) = \{0\} \) if and only if \(N \) is hyperbolic.

Proof. If \(N \) is parabolic, then \(1 \in D(N) = D_0(N) \), which is also harmonic. This means \(1 \in D_0(N) \cap \text{HD}(N) \).

Conversely, we assume that \(N \) is hyperbolic. Let \(u \in D_0(N) \cap \text{HD}(N) \). Then both \(u = u + 0 \) and \(u = 0 + u \) are the Royden decompositions. The uniqueness of the Royden decomposition implies that \(u = 0 \). \(\square \)

We say that \(w \in L(Y) \) is a flow from \(a \in X \) to the ideal boundary with strength \(I[w] \) if
\[
\partial w(x) = -\varepsilon_a(x)I[w].
\]
Let \(F(a, \infty) \) be the set of all flows \(w \) from \(a \) to the ideal boundary. It is well-known that \(dg_a \) is characterized as the unique optimal solution to the following extremal problem:
\[
d^*(a, \infty) = \inf \{H[w]; w \in F(a, \infty), \ I[w] = 1\}.
\]

We say that \(w \in L(Y) \) is a bi-flow from \(a \in X \) to the ideal boundary with strength \(J[w] \) if
\[
\partial B_r w(x) = -\varepsilon_a(x)J[w].
\]
Notice that
\[
J[w] = \Delta \partial w(a).
\]
Denote by \(BF(a, \infty) \) the set of all bi-flows from \(a \) to the ideal boundary of \(N \).

Analogous to \(d^*(a, \infty) \), we consider the following extremal problem:
\[
d^*_B(a, \infty) = \inf \{H[w]; w \in BF(a, \infty), \ \partial w \in D_0(N), \ J[w] = 1\}. \quad (*)
\]

The bi-harmonic Green function \(q_a \in L(X) \) with pole at \(a \) is defined by
\[
q_a(x) = \sum_{z \in X} g_a(z)g_z(x)
\]
if the sum converges (see [1], [4]). Notice that
\[\Delta q_a = -g_a \quad \text{and} \quad \Delta^2 q_a = \varepsilon_a \text{ on } X, \]

and that \(dq_a \) is a feasible solution to the problem (*).

We proved the following lemma in [6, Theorem 4.2]:

Lemma 5.3 Let \(N \) be parabolic and \(u \in D(N) \). If \(\sum_{x \in X} |\Delta u(x)| < \infty \), then \(\sum_{x \in X} \Delta u(x) = 0 \).

Corollary 5.1 If \(d^*_B(a, \infty) < \infty \), then \(N \) is hyperbolic and \(\partial w = -g_a \) for all feasible solution \(w \) to the problem (*).

Proof. Let \(w \) be a feasible solution to the problem (*). Then \(u = \partial w \in D_0(N) \) and \(\Delta u(x) = -\partial B_r w(x) = \varepsilon_a(x) \). By the above lemma, \(N \) must be hyperbolic and \(u = -g_a \). \(\square \)

The next theorem is an extension of [4, Theorem 3.1], which shows that \(q_a \in D(N) \) is equivalent to \(q_a \in D_0(N) \).

Theorem 5.1 The following are equivalent:

1. \(q_a \in D(N) \);
2. \(q_a \in D_0(N) \);
3. \(d^*_B(a, \infty) < \infty \).

In this case \(dq_a \) is a unique optimal solution to the problem (*).

Proof. It is obvious that (ii) implies (i). Suppose that \(q_a \in D(N) \). Since \(dq_a \) is a feasible solution to the problem (*), it follows that \(d^*_B(a, \infty) < \infty \). This shows that (i) implies (iii).

We shall show that (iii) implies (ii). We assume that \(d_B^*(a, \infty) < \infty \). First we shall prove that there exists an optimal solution to the problem (*). Let \(\{w_n\} \) be a minimizing sequence of (*). Then \((w_n + w_m)/2 \) is a feasible solution to the problem (*), so that we have

\[
d_B^*(a, \infty) \leq H[(w_n + w_m)/2] \leq H[(w_n + w_m)/2] + H[(w_n - w_m)/2] \\
= (H[w_n] + H[w_m])/2 \to d_B^*(a, \infty)
\]

as \(n, m \to \infty \). Thus \(H[w_n - w_m] \to 0 \) as \(n, m \to \infty \). There exists \(w^* \in L_2(Y; r) \) such that \(H[w_n - w^*] \to 0 \) as \(n \to \infty \). Since \(\{w_n\} \) converges pointwise to \(w^* \) and \(N \) is locally finite, we obtain \(w^* \in BF(a, \infty) \) and \(J[w^*] = 1 \). Also \(\partial w_n = -g_a \) implies that
\[\partial w^* = \lim_{n \to \infty} \partial w_n = -g_a \in D_0(N). \]

Therefore \(w^* \) is an optimal solution to the problem (*).

To prove the uniqueness of an optimal solution to the problem (*), let \(w' \) be another optimal solution to the problem (*). Then

\[
d_B^*(a, \infty) \leq H[(w^* + w')/2] \leq H[(w^* + w')/2] + H[(w^* - w')/2]
= (H[w^*] + H[w'])/2 = d_B^*(a, \infty),
\]

so that \(H[w^* - w'] = 0 \). Hence \(w^* = w' \).

For any \(\omega \in L_0(Y) \cap C(N) \) and any \(t \in \mathbb{R} \), we see that \(w^* + t\omega \) is a feasible solution to the problem (*). Thus

\[
d_B^*(a, \infty) \leq H[w^* + t\omega] = H[w^*] + 2t \langle w^*, \omega \rangle + t^2 H[\omega],
\]

so that \(\langle w^*, \omega \rangle = 0 \). By the usual way, we see that there exists \(u^* \in L(X) \) such that \(w^* = du^* \) (see the proof of [6, Theorem 3.2] for details).

Since \(D[u^*] = H[w^*] < \infty \), it follows that \(u^* \in D(N) \). Let \(u^* = v^* + h \) be the Royden decomposition with \(v^* \in D_0(N) \) and \(h \in HD(N) \). Let \(w' = dv^* \). Then \(w' \) is a feasible solution to the problem (*), so that

\[
D[v^*] + D[h] = D[u^*] = H[w^*] \leq H[w'] = D[v^*].
\]

This means that \(D[h] = 0 \) and \(H[w^*] = H[w'] \), i.e., \(h \) is a constant function and \(w^* = w' = dv^* \).

Let \(\{N_n\} \) be an exhaustion of \(N \) and \(g_a(n) \) the Green function of \(N_n \) with pole at \(a \). We have

\[
\sum_{z \in X} g_a(z)g_{x}^{(n)}(z) = -\sum_{z \in X} (\Delta v^*(z))g_{x}^{(n)}(z) = D[v^*, g_{x}^{(n)}].
\]

Since \(\{g_{x}^{(n)}\} \) converges to \(g_x \) (see [3, Section 3]), it follows that

\[
\sum_{z \in X} g_a(z)g_x(z) \leq \liminf_{n \to \infty} \sum_{z \in X} g_a(z)g_{x}^{(n)}(z) = \lim_{n \to \infty} D[v^*, g_{x}^{(n)}] = D[v^*, g_x] \leq D[v^*]^{1/2}D[g_x]^{1/2} < \infty.
\]
In particular, we obtain $\sum_{z \in X} g_a(z)^2 < \infty$, so that $q_a \in L(X)$ by [4, Theorem 2.3].

Define $f(x)$, $f_n(x)$ and $h_n(x)$ by

$$f(x) = \sum_{z \in X} g_x(z) \Delta v^*(z) = -q_a(x) \in L(X)$$
$$f_n(x) = \sum_{z \in X} g_z^{(n)}(x) \Delta v^*(z)$$
$$h_n = v^* + f_n.$$

Notice that h_n is harmonic on X_n and

$$D[h_n, f_n] = -\sum_{x \in X} (\Delta h_n(x)) f_n(x) = 0,$$

so that $D[v^*] = D[h_n] + D[f_n]$. We see by Lebesgue’s dominated convergence theorem that $\{f_n(x)\}$ converges pointwise to $f(x)$ for all $x \in X$. Since $\{D[f_n]\}$ is bounded, we see by [5, Theorem 4.1] that $q_a = -f \in D_0(N)$.

Let $f' = q_a - v^*$. Then

$$\Delta f' = \Delta q_a - \Delta v^* = -g_a + g_a = 0,$$

so that $f' \in D_0(N) \cap HD(N)$. Lemma 5.2 shows $f' = 0$. Therefore $q_a = v^* \in D_0(N)$ and $dv^* = dq_a$. \hfill \Box

6. Another extremal problem

Analogous to $d^*(a, \infty)$ and $d_B^*(a, \infty)$, we consider the following extremum problem:

$$d_B^{**}(a, \infty) = \inf \{H[w]; w \in BF(a, \infty), J[w] = 1\}. \quad (**)$$

Clearly $d_B^{**}(a, \infty) \leq d_B^*(a, \infty)$.

Theorem 6.1 Assume that $d_B^{**}(a, \infty) < \infty$. Then there exists a unique optimal solution w^{**} to the problem (**) Also there exists $v^{**} \in D_0(N)$ such that $w^{**} = dv^{**}$.

Proof. Let \(\{w_n\} \) be a minimizing sequence of (\(\ast \ast \)). Then \((w_n + w_m)/2 \) is a feasible solution to the problem (\(\ast \ast \)), so that we have
\[
d_{B}^{\ast}(a, \infty) \leq H[(w_n + w_m)/2] \leq H[(w_n + w_m)/2] + H[(w_n - w_m)/2] \\
= (H[w_n] + H[w_m])/2 \rightarrow d_{B}^{\ast}(a, \infty)
\]
as \(n, m \rightarrow \infty \). Thus \(H[w_n - w_m] \rightarrow 0 \) as \(n, m \rightarrow \infty \). There exists \(w^{\ast\ast} \in L_2(Y; \mathbf{r}) \) such that \(H[w_n - w^{\ast\ast}] \rightarrow 0 \) as \(n \rightarrow \infty \). Since \(\{w_n\} \) converges pointwise to \(w^{\ast\ast} \) and \(N \) is locally finite, we obtain \(w^{\ast\ast} \in \mathbf{BF}(a, \infty) \) and \(J[w^{\ast\ast}] = 1 \). Therefore \(w^{\ast\ast} \) is an optimal solution to the problem (\(\ast \ast \)).

To prove the uniqueness let \(w' \) be another optimal solution to the problem (\(\ast \ast \)). Then
\[
d_{B}^{\ast}(a, \infty) \leq H[(w^{\ast\ast} + w')/2] \leq H[(w^{\ast\ast} + w')/2] + H[(w^{\ast\ast} - w')/2] \\
= (H[w^{\ast\ast}] + H[w'])/2 = d_{B}^{\ast}(a, \infty),
\]
so that \(H[w^{\ast\ast} - w'] = 0 \). Hence \(w^{\ast\ast} = w' \).

For any \(\omega \in L_0(Y) \cap C(N) \) and any \(t \in \mathbf{R} \), we see that \(w^{\ast\ast} + t\omega \) is a feasible solution to the problem (\(\ast \ast \)). Thus
\[
d_{B}^{\ast}(a, \infty) \leq H[w^{\ast\ast} + t\omega] = H[w^{\ast\ast}] + 2t\langle w^{\ast\ast}, \omega \rangle + t^2H[\omega],
\]
so that \(\langle w^{\ast\ast}, \omega \rangle = 0 \). By the usual way, we see that there exists \(u^{\ast\ast} \in L(X) \) such that \(w^{\ast\ast} = du^{\ast\ast} \). Since \(D[u^{\ast\ast}] = H[w^{\ast\ast}] < \infty \), \(u^{\ast\ast} \in \mathbf{D}(N) \).

If \(N \) is hyperbolic type, then we let \(u^{\ast\ast} = v^{\ast\ast} + h \) be the Royden decomposition with \(v^{\ast\ast} \in \mathbf{D}_0(N) \) and \(h \in \mathbf{HD}(N) \); otherwise let \(v^{\ast\ast} = u^{\ast\ast} \in \mathbf{D}(N) = \mathbf{D}_0(N) \). Let \(w' = dv^{\ast\ast} \). Then \(w' \) is a feasible solution to the problem (\(\ast \ast \)), so that
\[
D[v^{\ast\ast}] + D[h] = D[u^{\ast\ast}] = H[w^{\ast\ast}] \leq H[w'] = D[v^{\ast\ast}].
\]
This means that \(D[h] = 0 \) and \(H[w^{\ast\ast}] = H[w'] \), i.e., \(h \) is a constant function and \(w^{\ast\ast} = w' = dv^{\ast\ast} \). \(\Box \)

We say that a network \(N \) satisfies the condition (LD) if there exists a constant \(c \) such that \(D[\Delta u] \leq cD[u] \) for all \(u \in L_0(X) \). We say that a network \(N \) is of bounded degree if \(\sup_{x \in X} \sum_{y \in Y} |K(x, y)| < \infty \).
Next proposition provides a sufficient condition for the condition (LD).

Proposition 6.1 Assume that \(r \equiv 1 \) and that \(N \) is of bounded degree. Then \(D[\Delta u] \leq 8\nu_0^2 D[u] \) for all \(u \in D(N) \), where \(\nu_0 = \sup_{x \in X} \sum_{y \in Y} |K(x, y)| \). Especially \(N \) satisfies the condition (LD).

Proof. First note that a simple calculation shows that
\[
\left(\sum_{j=1}^{n} \alpha_j \right)^2 \leq n \sum_{j=1}^{n} \alpha_j^2
\]
for \(\alpha_1, \ldots, \alpha_n \in \mathbb{R} \).

Let \(w = du \) and \(v = \Delta u \). Then
\[
dv(y) = - \sum_{y' \in Y} b(y, y') w(y') = - \sum_{y' \in Y} \sum_{x \in X} K(x, y) K(x, y') w(y').
\]
Since the number of \(y' \in Y \) with \(\sum_{x \in X} K(x, y) K(x, y') w(y') \neq 0 \) is at most \(2\nu_0 \) for each \(y \), it follows that
\[
(dv(y))^2 = \left(\sum_{y' \in Y} \sum_{x \in X} K(x, y) K(x, y') w(y') \right)^2
\leq 2\nu_0 \sum_{y' \in Y} \left(\sum_{x \in X} K(x, y) K(x, y') w(y') \right)^2.
\]
Since the number of \(x \in X \) with \(K(x, y) K(x, y') \neq 0 \) is at most two for each \(y, y' \in Y \), we have \((\sum_{x \in X} K(x, y) K(x, y'))^2 \leq 2 \sum_{x \in X} (K(x, y) K(x, y'))^2 \).

Using \(|K(x, y) K(x, y')|^2 = |K(x, y) K(x, y')| \) we obtain
\[
(dv(y))^2 \leq 4\nu_0 \sum_{y' \in Y} \left(\sum_{x \in X} |K(x, y) K(x, y')| \right) w(y')^2.
\]
Let \(Y(x) = \{ y \in Y; K(x, y) \neq 0 \} \) for \(x \in X \). Then \(\sum_{x \in X} \sum_{y' \in Y(x)} w(y')^2 = 2 \sum_{y \in Y} w(y)^2 \). By the above estimation, we have
\[
D[\Delta u] = H[dv] = \sum_{y \in Y} (dv(y))^2
\]
\[\leq 4\nu_0 \sum_{y \in Y} \sum_{y' \in Y} \left(\sum_{x \in X} |K(x, y)K(x, y')| \right) w(y')^2 \]

\[= 4\nu_0 \sum_{y' \in Y} \sum_{x \in X} \left(\sum_{y \in Y} |K(x, y)| \right) |K(x, y')| w(y')^2 \]

\[\leq 4\nu_0^2 \sum_{y' \in Y} \sum_{x \in X} |K(x, y')| w(y')^2 \]

\[= 4\nu_0^2 \sum_{x \in X} \sum_{y' \in Y(x)} w(y')^2 = 8\nu_0^2 \sum_{y \in Y} w(y)^2 \]

\[= 8\nu_0^2 D[u]. \]

Lemma 6.1 Assume that \(N \) satisfies the condition (LD). If \(u \in D_0(N) \), then \(\Delta u \in D_0(N) \).

Proof. Let \(\{f_n\} \) be a sequence in \(L_0(X) \) such that \(\|f_n - u\|_2 \to 0 \) as \(n \to \infty \). Then \(\|f_n - f_m\|_2 \to 0 \) as \(n, m \to \infty \) and \(\{D[f_n]\} \) is bounded. By the condition (LD) there exists a constant \(c > 0 \) such that

\[D[\Delta f_n - \Delta f_m] \leq cD[f_n - f_m] \to 0 \quad (n, m \to \infty). \]

Thus \(\|\Delta f_n - \Delta f_m\|_2 \to 0 \) as \(n, m \to \infty \). Therefore \(\{\Delta f_n\} \) is a Cauchy sequence in \(D_0(N) \). We can find \(\varphi \in D_0(N) \) such that \(\|\Delta f_n - \varphi\|_2 \to 0 \) as \(n \to \infty \). Since \(\{f_n(x)\} \) converges pointwise to \(u(x) \), it follows that \(\{\Delta f_n(x)\} \) converges pointwise to \(\Delta u(x) \). Since \(\{\Delta f_n(x)\} \) also converges pointwise to \(\varphi(x) \) and \(\{D(\Delta f_n)\} \) is bounded, we see that \(\Delta u = \varphi \in D_0(N) \) by [5, Theorem 4.1].

\[\Box \]

Theorem 6.2 Assume that \(N \) satisfies the condition (LD). Then

\[d^*_B(a, \infty) = d^*_B(a, \infty). \]

If \(d^{**}_B(a, \infty) < \infty \), then \(dq_a \) is a unique optimal solution to the problem (**).

Proof. Since \(d^{**}_B(a, \infty) \leq d^*_B(a, \infty) \), we shall show that \(d^{**}_B(a, \infty) \geq d^*_B(a, \infty) \). We may assume that \(d^{**}_B(a, \infty) < \infty \). Let \(w^{**} \) and \(v^{**} \) be the same as in Theorem 6.1. By Lemma 6.1, we see that \(\Delta v^{**} \in D_0(N) \). This means that \(w^{**} = dv^{**} \) is a feasible solution to the problem (**). We have

\[d^*_B(a, \infty) \leq H[w^{**}] = d^*_B(a, \infty). \]
Assume that $d^{\ast\ast}_B(a, \infty) < \infty$. Then N is hyperbolic by Corollary 5.1. Let $f' = q_a - v^\ast$. Since $q_a \in D_0(N)$ by Theorem 5.1, it follows that $f' \in D_0(N)$ and $\Delta f' = \Delta q_a - \Delta v^\ast = -g_a + g_a = 0$, so that $f' \in D_0(N) \cap HD(N)$. Hence $f' = 0$. This means that $dq_a = dv^\ast$ is a unique optimal solution to the problem (**).

\[\square\]

7. An example

We show an example of $w \in BF(a, \infty)$ for the following network:

Example 7.1 Let $X = \{x_n; n \geq 0\}$, $Y = \{y_n; n \geq 1\}$, $e(y_n) = \{x_{n-1}, x_n\}$ for $n \geq 1$. Let $K(x_n, y_n) = 1$, $K(x_{n-1}, y_n) = -1$ for $n \geq 1$ and $K(x, y) = 0$ for any other pairs. For a strictly positive function r on Y, $N = \{X, Y, K, r\}$ is an infinite network.

Let $r_n = r(y_n)$, $R_n = \sum_{k=n+1}^{\infty} r_k$ and $\rho_n = \sum_{k=1}^{n} r_k$. We assume that $\rho := \sum_{n=1}^{\infty} r_n < \infty$. Then it is easy to see that

\[g_{x_k}(x_n) = R_n \quad (0 \leq k \leq n), \quad g_{x_k}(x_n) = R_k \quad (k > n).\]

Let w be a feasible solution to the problem (***) with $a = x_0$ and let $v = \partial w$. Let $w_n = w(y_n)$ for $n \geq 1$. Let $v_n = v(x_n)$ for $n \geq 0$. We have

\[B_r w(y_n) = \frac{1}{r(y_n)} \sum_{x \in X} K(x, y_n) \partial w(x) = \frac{1}{r_n} (v_n - v_{n-1}),\]

\[\partial B_r w(x_0) = \sum_{y \in Y} K(x_0, y) B_r w(y) = -B_r w(y_1) = -\frac{1}{r_1} (v_1 - v_0),\]

\[\partial B_r w(x_n) = \sum_{y \in Y} K(x_n, y) B_r w(y) = B_r w(y_n) - B_r w(y_{n+1})\]

\[= \frac{1}{r_n} (v_n - v_{n-1}) - \frac{1}{r_{n+1}} (v_{n+1} - v_n).\]

Since $\partial B_r w(x_0) = -1$ and $\partial B_r w(x_n) = 0$ for $n \geq 1$, it follows that $r_n^{-1}(v_n - v_{n-1}) = 1$. Thus

\[v_n = \rho_n + v_0.\]
From
\[
v_n = \sum_{y \in \mathcal{Y}} K(x_n, y) w(y) = w_n - w_{n+1} \quad (n \geq 1), \quad v_0 = -w_1,
\]
it follows that \(w_n - w_{n+1} = \rho_n + v_0\), and that
\[
w_n = -\sum_{k=1}^{n-1} \rho_k - (n-1)v_0 + w_1 = -\sum_{k=1}^{n-1} \rho_k - nv_0.
\]

Let
\[
A_n = \sum_{k=1}^{n-1} \rho_k, \quad \alpha = \sum_{n=1}^{\infty} n^2 r_n, \quad \beta = \sum_{n=1}^{\infty} nr_n A_n, \quad \gamma = \sum_{n=1}^{\infty} r_n A_n^2.
\]

Then
\[
H[w] = \sum_{n=1}^{\infty} r_n w_n^2 = \sum_{n=1}^{\infty} r_n (-A_n - nv_0)^2 = \alpha v_0^2 + 2\beta v_0 + \gamma. \quad (2)
\]

Now let \(w'\) be a feasible solution to the problem (\(*\)). In a similar way we let \(w'_n = w'(y_n)\) and \(v'_n = v'(x_n) = \partial w'(x_n)\) and obtain
\[
v'_n = \rho_n + v'_0,
\]
\[
w'_n = -\sum_{k=1}^{n-1} \rho_k - nv'_0 = -A_n - nv'_0.
\]

Since \(v' \in D_0(N)\), we have \(\lim_{n \to \infty} v'_n = 0\), or \(v'_0 = -\rho\). Therefore
\[
w'_n = -A_n + n\rho. \quad (3)
\]

Since \(\rho = R_0\) and \(\rho_k = R_0 - R_k\) for \(k \geq 1\), we have
\[
w'_n = -\sum_{k=1}^{n-1} (R_0 - R_k) + nR_0 = \sum_{k=0}^{n-1} R_k. \quad (4)
\]
Notice that this is a unique feasible solution to the problem (\(*\)). By (3)
\[d^*_B(a, \infty) = H[w'] = \sum_{n=1}^{\infty} r_n(-A_n + n\rho)^2 = \alpha \rho^2 - 2\beta \rho + \gamma. \]

(a) Assume that all of \(\alpha, \beta, \gamma \) converge. First we note that \(\alpha \rho > \beta \).

Indeed,

\[A_n = \sum_{k=1}^{n-1} \rho_k = \sum_{k=1}^{n-1} \sum_{j=1}^{k} r_j < n \sum_{j=1}^{n} r_j = n\rho_n, \]

and that

\[\beta = \sum_{n=1}^{\infty} n r_n A_n < \sum_{n=1}^{\infty} n^2 r_n \rho_n < \sum_{n=1}^{\infty} n^2 r_n \rho = \alpha \rho. \]

Now (2) is minimized at \(v_0 = -\beta/\alpha \), so that

\[d^*_{B}(a, \infty) = \gamma - \frac{\beta^2}{\alpha}. \]

It follows that

\[d^*_B(a, \infty) - d^*_{B}(a, \infty) = \alpha \rho^2 - 2\beta \rho + \frac{\beta^2}{\alpha} = \alpha \left(\rho - \frac{\beta}{\alpha} \right)^2 > 0. \]

Theorem 6.2 implies that \(N \) does not satisfy the condition (LD).

(b) Taking \(r_n = n^{-5/3} \) for \(n \geq 1 \), since \(R_n = O(n^{-2/3}) \), by (4) we have \(w'_n = O(n^{1/3}) \), and that \(H[w'] = O(\sum_{n=1}^{\infty} n^{-5/3}(n^{1/3})^2) = \infty \). This means \(d^*_B(a, \infty) = \infty \). On the other hand the bi-harmonic Green function \(q_a \) is given by

\[q_a(x_n) = \sum_{k=0}^{\infty} g_a(x_k)g_{x_k}(x_n) = \sum_{k=0}^{n} R_k R_n + \sum_{k=n+1}^{\infty} R_k^2 = O(n^{-1/3}). \]

Thus \(q_a \in L(X) \) does not imply \(d^*_B(a, \infty) < \infty \).
References

Hisayasu Kurata
Yonago National College of Technology
Yonago, Tottori, 683-8502 Japan
E-mail: kurata@yonago-k.ac.jp

Maretsugu Yamasaki
address